SUBROUTINE UHYPER(BI1,BI2,AJ,U,UI1,UI2,UI3,TEMP,NOEL,CMNAME, $ INCMPFLAG,NUMSTATEV,STATEV,NUMFIELDV, $ FIELDV,FIELDVINC,NUMPROPS,PROPS) C INCLUDE 'ABA_PARAM.INC' C CHARACTER*80 CMNAME DIMENSION UI1(3),UI2(6),UI3(6),STATEV(*),FIELDV(*), $ FIELDVINC(*),PROPS(*) C PARAMETER (ZERO=0.0D0,ONE=1.0D0, TWO=2.0D0, THREE=3.0D0) C C10 = 80.0 C01 = 0.0 D1 = 2.013423E-04 C U=C10*(BI1-THREE)+C01*(BI2-THREE) + ((AJ-ONE)**2)/D1 UI1(1)=C10 UI1(2)=C01 UI1(3)=TWO*(AJ-ONE)/D1 UI2(1)=ZERO UI2(2)=ZERO UI2(3)=TWO/D1 UI2(4)=ZERO UI2(5)=ZERO UI2(6)=ZERO UI3(1)=ZERO UI3(2)=ZERO UI3(3)=ZERO UI3(4)=ZERO UI3(5)=ZERO UI3(6)=ZERO RETURN END SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 1 RPL,DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN, 2 TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,MATERL,NDI,NSHR,NTENS, 3 NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,CELENT, 4 DFGRD0,DFGRD1,NOEL,NPT,KSLAY,KSPT,KSTEP,KINC) C INCLUDE 'ABA_PARAM.INC' C CHARACTER*8 MATERL DIMENSION STRESS(NTENS),STATEV(NSTATV), 1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 2 STRAN(NTENS),DSTRAN(NTENS),DFGRD0(3,3),DFGRD1(3,3), 3 TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3),DROT(3,3) C C LOCAL ARRAYS C ---------------------------------------------------------------- C BBAR - DEVIATORIC RIGHT CAUCHY-GREEN TENSOR C DISTGR - DEVIATORIC DEFORMATION GRADIENT (DISTORTION TENSOR) C ---------------------------------------------------------------- C DIMENSION BBAR(6),DISTGR(3,3) C PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, FOUR=4.D0) C C ---------------------------------------------------------------- C UMAT FOR COMPRESSIBLE NEO-HOOKEAN HYPERELASTICITY C CANNOT BE USED FOR PLANE STRESS C ---------------------------------------------------------------- C PROPS(1) - C10 C PROPS(2) - C01 C PROPS(3) - D1 C ---------------------------------------------------------------- C C ELASTIC PROPERTIES C C10=PROPS(1) C01=PROPS(2) D1 =PROPS(3) C C JACOBIAN AND DISTORTION TENSOR C DET=DFGRD1(1, 1)*DFGRD1(2, 2)*DFGRD1(3, 3) 1 -DFGRD1(1, 2)*DFGRD1(2, 1)*DFGRD1(3, 3) IF(NSHR.EQ.3) THEN DET=DET+DFGRD1(1, 2)*DFGRD1(2, 3)*DFGRD1(3, 1) 1 +DFGRD1(1, 3)*DFGRD1(3, 2)*DFGRD1(2, 1) 2 -DFGRD1(1, 3)*DFGRD1(3,1)*DFGRD1(2, 2) 3 -DFGRD1(2, 3)*DFGRD1(3, 2)*DFGRD1(1, 1) END IF SCALE=DET**(-ONE/THREE) DO K1=1, 3 DO K2=1, 3 DISTGR(K2, K1)=SCALE*DFGRD1(K2, K1) END DO END DO C C CALCULATE LEFT CAUCHY-GREEN TENSOR C BBAR(1)=DISTGR(1, 1)**2+DISTGR(1, 2)**2+DISTGR(1, 3)**2 BBAR(2)=DISTGR(2, 1)**2+DISTGR(2, 2)**2+DISTGR(2, 3)**2 BBAR(3)=DISTGR(3, 3)**2+DISTGR(3, 1)**2+DISTGR(3, 2)**2 BBAR(4)=DISTGR(1, 1)*DISTGR(2, 1)+DISTGR(1, 2)*DISTGR(2, 2) 1 +DISTGR(1, 3)*DISTGR(2, 3) IF(NSHR.EQ.3) THEN BBAR(5)=DISTGR(1, 1)*DISTGR(3, 1)+DISTGR(1, 2)*DISTGR(3, 2) 1 +DISTGR(1, 3)*DISTGR(3, 3) BBAR(6)=DISTGR(2, 1)*DISTGR(3, 1)+DISTGR(2, 2)*DISTGR(3, 2) 1 +DISTGR(2, 3)*DISTGR(3, 3) END IF C C CALCULATE THE STRESS C TRBBAR=(BBAR(1)+BBAR(2)+BBAR(3))/THREE EG=TWO*C10/DET EK=TWO/D1*(TWO*DET-ONE) PR=TWO/D1*(DET-ONE) DO K1=1,NDI STRESS(K1)=EG*(BBAR(K1)-TRBBAR)+PR END DO DO K1=NDI+1,NDI+NSHR STRESS(K1)=EG*BBAR(K1) END DO C C CALCULATE THE STIFFNESS C EG23=EG*TWO/THREE DDSDDE(1, 1)= EG23*(BBAR(1)+TRBBAR)+EK DDSDDE(2, 2)= EG23*(BBAR(2)+TRBBAR)+EK DDSDDE(3, 3)= EG23*(BBAR(3)+TRBBAR)+EK DDSDDE(1, 2)=-EG23*(BBAR(1)+BBAR(2)-TRBBAR)+EK DDSDDE(1, 3)=-EG23*(BBAR(1)+BBAR(3)-TRBBAR)+EK DDSDDE(2, 3)=-EG23*(BBAR(2)+BBAR(3)-TRBBAR)+EK DDSDDE(1, 4)= EG23*BBAR(4)/TWO DDSDDE(2, 4)= EG23*BBAR(4)/TWO DDSDDE(3, 4)=-EG23*BBAR(4) DDSDDE(4, 4)= EG*(BBAR(1)+BBAR(2))/TWO IF(NSHR.EQ.3) THEN DDSDDE(1, 5)= EG23*BBAR(5)/TWO DDSDDE(2, 5)=-EG23*BBAR(5) DDSDDE(3, 5)= EG23*BBAR(5)/TWO DDSDDE(1, 6)=-EG23*BBAR(6) DDSDDE(2, 6)= EG23*BBAR(6)/TWO DDSDDE(3, 6)= EG23*BBAR(6)/TWO DDSDDE(5, 5)= EG*(BBAR(1)+BBAR(3))/TWO DDSDDE(6, 6)= EG*(BBAR(2)+BBAR(3))/TWO DDSDDE(4,5)= EG*BBAR(6)/TWO DDSDDE(4,6)= EG*BBAR(5)/TWO DDSDDE(5,6)= EG*BBAR(4)/TWO END IF DO K1=1, NTENS DO K2=1, K1-1 DDSDDE(K1, K2)=DDSDDE(K2, K1) END DO END DO C RETURN END