*Heading Mullins effect, compressible Marlow model 3D element, cyclic uniaxial tension Comparison of nominal stresses ** Job name: Job-1 Model name: mmecdo3cut_yeoh ** ** PARTS ** *Part, name=PART-1 *End Part ** ** ASSEMBLY ** *Assembly, name=Assembly ** *Instance, name=PART-1-1, part=PART-1 *Node 1, 0., 0., 0. 2, 1., 0., 0. 3, 1., 1., 0. 4, 0., 1., 0. 5, 0., 0., 1. 6, 1., 0., 1. 7, 1., 1., 1. 8, 0., 1., 1. *Element, type=C3D8RH 1, 1, 2, 3, 4, 5, 6, 7, 8 *Elset, elset=ONE 1, ** Region: (Section-1-ONE:ONE) *Elset, elset=_I1, internal 1, ** Section: Section-1-ONE *Solid Section, elset=_I1, material=MARLOW 1., *End Instance *Nset, nset=ALL, instance=PART-1-1, generate 1, 8, 1 *Nset, nset=FACE1, instance=PART-1-1, generate 1, 4, 1 *Nset, nset=FACE2, instance=PART-1-1, generate 5, 8, 1 *Nset, nset=FACE3, instance=PART-1-1 1, 2, 5, 6 *Nset, nset=FACE4, instance=PART-1-1 2, 3, 6, 7 *Nset, nset=FACE5, instance=PART-1-1 3, 4, 7, 8 *Nset, nset=FACE6, instance=PART-1-1 1, 4, 5, 8 *Nset, nset=SET, instance=PART-1-1 6,7,3 *NSET, NSET=TWO, instance=PART-1-1 2, *EQUATION ** Since the S11 output is Cauchy or true stress, we need to ** determine the nominal stress for post-processing. ** Nodes 6,7,3 are tied to node 2 in dof 1 so that: ** Nominal stress (dof 1) = RF1 (@ node 2) / Original area ** (w/c is 1 x 1 = 1) 2 SET,1,1, PART-1-1.2,1,-1 *End Assembly ** ** MATERIALS ** *Material, name=MARLOW *HYPERELASTIC,MARLOW *UNIAXIAL TEST DATA 0.000000000000000, 0.000000000000000 0.231494000000000, 0.030000000000000 0.448560000000000, 0.060000000000000 0.747177000000000, 0.105000000000000 1.13595000000000, 0.172500000000000 1.59760000000000, 0.273750000000000 2.08089000000000, 0.423750000000000 2.47973000000000, 0.573750000000000 3.03767000000000, 0.723750000000000 4.07610000000000, 0.873750000000000 5.99936000000000, 1.02375000000000 9.30106000000000, 1.17375000000000 14.5712000000000, 1.32375000000000 22.5031000000000, 1.47375000000000 33.9013000000000, 1.62375000000000 49.6884000000000, 1.77375000000000 70.9126000000000, 1.92375000000000 98.7549000000000, 2.07375000000000 134.537000000000, 2.22375000000000 179.726000000000, 2.37375000000000 235.948000000000, 2.52375000000000 304.986000000000, 2.67375000000000 388.797000000000, 2.82375000000000 489.510000000000, 2.97375000000000 509.043000000000, 3.00000000000000 *VOLUMETRIC TEST DATA 0.000000000000000, 1.00000000000000 82.7586206896552, 0.970000000000000 165.517241379310, 0.940000000000000 248.275862068965, 0.910000000000000 331.034482758621, 0.880000000000000 413.793103448276, 0.850000000000000 496.551724137931, 0.820000000000000 579.310344827586, 0.790000000000000 662.068965517241, 0.760000000000000 744.827586206897, 0.730000000000000 827.586206896552, 0.700000000000000 *Mullins effect 1.1,100.0, 0.1 ** ---------------------------------------------------------------- ** ** STEP: Step-1 ** *Step, name=Step-1, nlgeom, inc=20 UNIAXIAL TENSION *Static, direct 1., 20., ** ** BOUNDARY CONDITIONS ** *Boundary FACE1, 3, 3 FACE3, 2, 2 FACE6, 1, 1 TWO, 1, 1, 2. ** ** HISTORY OUTPUT ** ***Output, history, frequency=1 *Output, history, frequency=10 *Element Output, elset=PART-1-1.ONE SENER, S, DMENER *Node Output, nset=TWO U,RF, *El Print, freq=999999 *Node Print, freq=999999 *End Step ** ---------------------------------------------------------------- ** ** STEP: Step-2 ** *Step, name=Step-2, nlgeom *Static, direct 1., 20., ** ** BOUNDARY CONDITIONS ** *Boundary, op=NEW FACE1, 3, 3 FACE3, 2, 2 FACE6, 1, 1 TWO, 1, 1 *End Step ** ---------------------------------------------------------------- ** ** STEP: Step-3 ** *Step, name=Step-3, nlgeom *Static, direct 1., 20., ** ** BOUNDARY CONDITIONS ** *Boundary, op=NEW FACE3, 2, 2 FACE6, 1, 1 TWO, 1, 1, 3. FACE1, 3, 3 *End Step ** ---------------------------------------------------------------- ** ** STEP: Step-4 ** *Step, name=Step-4, nlgeom *Static, direct 1., 20., ** ** BOUNDARY CONDITIONS ** *Boundary, op=NEW FACE1, 3, 3 FACE3, 2, 2 FACE6, 1, 1 TWO, 1, 1 ** *End Step